

RESEARCH ARTICLE

Prevalence of Malaria among Patients Visiting Public Hospitals in Mogadishu, Somalia-Cross-Sectional Study

Mohamed Salad Abdi^{1,2*}

¹Faculty Health Science, Horseed International University, Mogadishu, Somalia; ²Department of Public Health, Horseed International University, Mogadishu, Somalia

Abstract:

Background: In tropical and subtropical areas, malaria is one of the main causes of death and morbidity. Malaria is a major worldwide health concern, especially in sub-Saharan Africa, which includes Somalia, where the majority of cases and deaths from the disease occur. Malaria has a negative impact on both public health and the economic growth of many developing nations. Examining and quantifying the prevalence of malaria among outpatients who have visited hospitals were the study's goal. Study was conducted between September, and November 2023.

Methods: A structured questionnaire was administered to 278 were collected patients visit two general hospitals at single time with obtained consented, blood samples were diagnosis used by rapid diagnosis test (RDTs), this study was identified the species of plasmodium used standard keys. Thus this study design was cross-sectional and quantitative study. The data source was primary information, and was nonrandom sampling. The data generated was analysis using percentage and present in graph forms. Chi- square was used to determine the degree of association between malaria prevalence and factors influencing its transmission, performed by (SPSS 20 version).

Results: total of 278 was recruited to conduct the study at out-patient department OPD in two hospitals, Mogadishu, Somalia. Out of 278 persons examined for malaria parasites, 12 (4.3%) were positive. Females were more participated than males 185 (66.5%). The respondents were observed 43.5% use it most of the time sleep under mosquito net.

Conclusion: The investigation clearly showed that the persons with malaria infection was minimal. Because the participants aware of the threat posed by mosquitoes in their area, they placed a strong emphasis on vector control measures as reduce the number of mosquito breeding sites. They also understood the significance of indoor residual spray (IRS), which is essential for both mosquito prevention and control.

Received: April 24, 2024 Accepted: August 01, 2024 Published: September 15, 2024

Keywords: Malaria, Vector-borne, Somalia, Febrile, IRS.

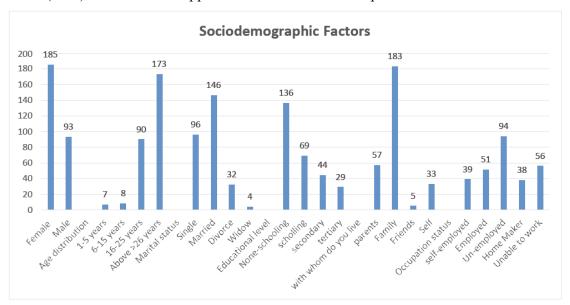
1. INTRODUCTION

Malaria is a life-threatening infectious disease caused by Plasmodium parasites that are transmitted to humans through the bites of infected female Anopheles mosquitoes. In many underdeveloped countries, it is also one of the main causes of mortality and morbidity. Malaria is one of the major worldwide health issues. The World Health Organization (WHO) estimates that there were 229 million cases of malaria

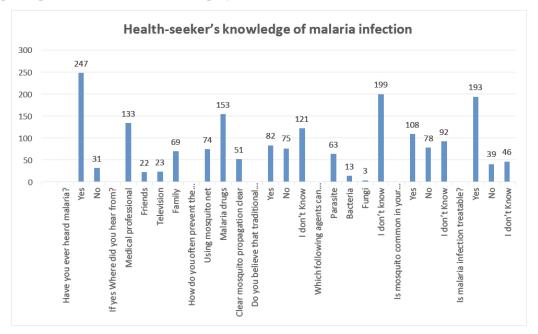
^{*}Correspondence should be addressed to Mohamed Salad Abdi Faculty Health Science, Horseed International University, Mogadishu, Somalia; Department of Public Health, Horseed International University, Mogadishu, Somalia; E-mail: mohamedsaladabdi114@gmail.com

worldwide in 2019. In the same year, malaria was responsible for almost 409,000 deaths as well. It's crucial to remember that malaria mostly strikes people in tropical and subtropical areas, with Africa bearing the brunt of the disease. However, initiatives like bed nets, mosquito control, and better access to diagnosis and treatment are being made in an effort to prevent and manage malaria (Kamau, Alice, 2020). Malaria is a serious problem for public health in Africa. The World Health Organization (WHO) estimates that 94% of malaria infections and fatalities globally occurred in Africa in 2019 (De Oliveira, Alexandre Macedo, 2011). Africa is still suffering malaria infection based on poor access to healthcare, and difficulties in exercising earlier at control and preventive measures in places that more common the mosquitoes. On combat malaria, however, a number of programmers and interventions are being put into throughout Africa for illumination of malaria infection. These include the provision of antimalarial medications, indoor residual spraying, bed nets sprayed with insecticides, prevention and early treatment for lowering the fatality rates from malaria infection (Brousse, O., 2020). In Somalia, malaria is one of the problem about 51% of the total population (7.6 million) living in areas where the burden of disease is > 1 case per 1000 population. The most common of malaria species in the Somalia is p falciparum accounting of 95% of the malaria infection. There are limited national data on the true burden of malaria in Somalia. The World malaria report 2020 estimated that there were around 759,000 cases and 1942 deaths in Somalia in 2019. Somalia has taken steps to malaria eradication, including distributing bed nets treated, insecticide, antimalarial medications and public media awareness that aimed to minimize the national morbidity and mortality of malaria infection (Warsame, 22 May 2021). The objective of this study was examining and determines the magnitude of malaria prevalence among the population arrived at two public hospitals for health purpose. Though there has been mainstay of malaria control efforts in Mogadishu city about the distributions of Insecticide-treated bed nets (ITNs, and indoor residual spraying (IRS).

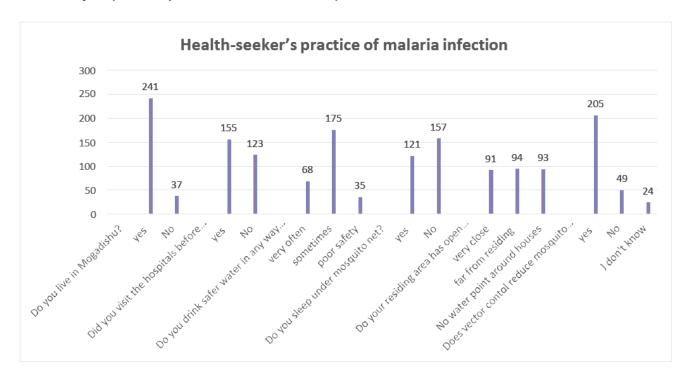
2. MATERIAL AND METHODS


A structured questionnaire was administered to 278 were collected patients visit two general hospitals at single time with obtained consented, blood samples were diagnosis used by rapid diagnosis test (RDTs). The study was identified the species of plasmodium used standard keys. Thus this study design was cross-sectional and quantitative study. The data source was primary date and was nonrandom sampling. The data generated was analysis using percentage and present in graph forms. Chi-square was used to determine the degree of association between malaria prevalence and factors influencing its transmission, performed by (SPSS 20 version). Confidence interval was 95%, and marginal 0.5%. With conducted data collection at the out-patient's department OPD on September 2023 to November 2023. In addition, data collection was done by two general hospitals naming Banaadir and De Martino hospitals. Since persons with sign and symptoms of malaria regarded history crime, economic, disease and also age. Since out of 278 persons examined for malaria parasites, 12 (4.3%) were positive. Females were more participated than males 185 (66.5%). The respondents were observed 43.5% use it most of the time sleep under mosquito net. Furthermore, the result expressed that most of the respondents were no schooling.

3. RESULT


Total of 278 was recruited to conduct the study at out-patient department OPD in two general hospitals, Mogadishu, Somalia. This study was an observation based on factors influenced the malaria prevalence and impact of sociodemographic characteristics of malaria. The outcome of study was avoided information bias regarded on patients' response, of fever for the last 24hrs were only allowed to participate this study while more patients were visited both hospitals.

Researcher collected data at two hospitals for an interview and used RDTs for blood investigation. Researcher was adhering the ethical consideration, patients take them a consent at time of interview and examination. The researcher brought Vaxpert RDTs for blood sample test. This study was non-probability sampling used for the participants who fit the criteria, such as patients with history of fever in the previous 24 hours, pain joints, loss appetite, and bitter mouth (**Graphs 1-3**).


Used on a population proportion of 50% and a signal proportion of the population, the study's total sample size was 278. In addition, the researcher has obtained approval latter from the National Institute of Health Somalia (NIH) and as well as approval letters from two hospitals about data collection.

Graph 1 Presented: The majority of the participants 185 (66.5%) were female. Moreover, the most participants of age group were 173 (62.2%), older than 26 years of age. Furthermore, the marital status of participants was married 146 (52.5%), on top of that the educational attainment of the interviewees, 136 (48.9) had not attended school at all for their lives, in addition the participants whom live with families were 183, (65.8%). Another point is occupation status of the participants was 94 (33.8%) un-employed.

Graph 2 Presented: The most participants in this study 247 (88.8%), was perceiving the malaria, where more participants have gotten messages about the malaria from the medical professional as individuals and collectively 133 (49%), in addition most of the participants 153 (55%) were making at the prevent of mosquitoes, with majorly they used malaria drugs, on top of that more participants didn't believe 121 (43.5%) the traditional medicine treating patients with malaria infection, moreover, majority of the participants didn't aware the primary cause of malaria infection 199 (71.6%), another point is half of participants 108 (48.8%) reported the mosquito is in common at their residence. Despite the participants were recognizes 193 (69.4%) of malaria is treatable.

Graph 3 Presented: The participants of this study was reported 241 (86.7%) live in Mogadishu city, furthermore, the participants 155 (55.8%) were visit the hospitals before, another point is, most of the participants were 175 (62.9%) reported they get sometime safe water which is in-adequate, on top of that more participants reported 157 (56.5%) didn't sleep under mosquito net, due to poor perception, villages are living the participants 94 (33.8%) are far away a water points, and in addition 205 (73.7%) of participants have reported more emphasize to vector control and protect the transmission of mosquitoes in order to reduce, they use all measurement to mitigate the malaria case.

Table 1: Shows the outcome of the study that factors influenced the malaria prevalence was analyst by chi-square used to determine the degree of association between variables. Even though, the result was revealed no significant regarded p value >0.005. So that's why this table indicate that no significant relationship between the dependent and independent variables.

Table 1: Association between sociodemographic characteristics and prevalence of malaria.

VARIABLES	Malaria	Positive	Malaria	Malaria negative		DF	P value
	No.	%	No.	%	X ² value	Dr	r value
Gender							
Male	6	6.5	89	93.5	1.542	1	0.214257
Female	6	3.2	179	96.8	1.542		0.214257
Age distribution							
1-6 years	0	00	7	2.6			
6-15 years	0	00	8	3	1.215976	3	0.749175
16-25 years	3	25	87	32	1.2139/0	3	0.749173
>26 years	9	75	164	61			
Marital status							

(Table 1) Contd....

VARIABLES	Malaria	Positive	Malaria	negative	2	DF	P value
VARIABLES	No.	%	No.	%	X ² value	DI	P value
Single	5	41.7	91	32.2		1	
Married	6	50	140	52.6	0.490443	3	0.920986
Divorce	1	8.3	31	11.5	0.490443	3	0.920980
Widow			4	1.4			
Education level							
No schooling	4	33	132	49.6	1.462044		
Schooling	4	33	65	24.4		3	0.691
Secondary	2	16	42	15.7		3	0.091
Tertiary	2	16	27	10.1			
Occupation status							
Self-employed	3	25	36	59.8			
Employed	4	33	47	55.8			
Un-employed	0	00	94	53.4	8.196636	4	0.0846
Home maker	1	8.3	37				
Unable to work	4	33	52				
With whom do you live							
Parents	4	33.3	53	19.9	1.471561	- 3	
Family	7	58.3	176	66.2			0.688849
Friends	0	00	5	1.9			0.088849
By my self	1	8.3	32	12			

Table 2: Revealed on the outcome of patients' knowledge was associated with malaria prevalence in certain factors didn't have an impact at p value above 0.05. Another point is the outcome of the study was shown the treatment of traditional medicine has strongly associated with prevalence of malaria infection and has effectively treated patients with malaria infection regarded P < 0.005.

Table 2: Association between health-seeking knowledge and prevalence of malaria.

VARIABLES	Malaria p	ositive	Malaria n	egative	X ² value	DF	P value
	No.	%	No.	%			
Have you ever heard malaria	?						
Yes	11	91.6	236	88.7	0.1005	1	0.751227
No	1	8.3	30	11.3			0.751227
Did you visit the hospitals be	fore today?						
Yes	5	41.6	150	56.3	1.009	1	0.215115
No	7	58.3	116	43.6			0.315115
How do you often prevent th	e mosquito bite	?		,		I	

VARIABLES	Malaria p	ositive	Malaria 1	negative	2 -	DF	P value
VARIABLES	No.	%	No.	%	X ² value	DF	P value
Using net	2	16.6	72	27.0			
Malaria drugs	9	75.0	144	54.1	2.0601	2	0.356983
Cleaning place	1	8.3	50	18.7			
Do you believe that traditions	al medicine cure	ed malaria i	nfection?				
Yes	6	50.	76	28.571		2	
No	5	41.6	70	26.315	6.3588		0.041609
I don't know	1	8.3	120	45.112			
Which following agents can	cause malaria ir	fection?					
Parasite	4	33.3	59	22.1		2	0.698096
Bacteria	1	8.3	12	4.5	1.431809		
Fungi	0	00	3	1.1	1.431809	3	
I don't know	7	58.3	192	72.2			
Is your village common a mo	squito?						
Yes	4	33.3	104	39.1			
No	4	33.3	74	27.8	0.22284	2	0.894563
I don't know	4	33.3	88	33.1			
Do you live in Mogadishu?							
Yes	10	83.3	231	86.8	0.122510	1	0.726320
No	2	16.6	35	13.2	0.122518	1	

Table 3: Shows all factors influencing the malaria prevalence was analyst quietly as to identified the degree of associated between predictable factors and explanatory factor along the p value 0.005. On top of that patients who have taken malaria treatment was statistically significant p<0.005. despite of that the most generated outcome has expressed the statistically not significant, because H_0 is supported accordingly. However, the results were figure out the malaria infection was less association with factors influencing malaria prevalence. Furthermore data was draw there was weak correlations between factors.

Table 3: Association between health-seeking practices and prevalence of malaria.

VARIABLES	Malaria	a Positive Malaria negative		negative	2	DE	D .1 .
	No.	%	No.	%	X ² value	DF	P value
Is malaria treatable?							
Yes	12	6.2	181	93.8	5.523394	2	0.063184
No	00	100	39	100			
I don't know	00	100	46	100			
Did you ever take malaria treat	tment?		ı		1	•	
Yes	11	6.4	161	93.6	4.710765		0.020010
No	1	0.9	105	99.1	4.719765	1	0.029818

(Table 3) Contd....

VARIABLES	Malaria	Positive	Malaria	negative	2	DF	P value
	No.	%	No.	%	X ² value		
Do you drink safer water in an	y way to make	treatment?					
Very often	3	4.4	65	95.6			
Sometimes	7	4	168	96	0.209506	2	0.900547
Poor safety	2	5.7	33	94.3	_		
Did you often sleep under mos	quito net?						
Yes	6	5	115	95	0.212007	1	0.642720
No	6	3.8	151	96.2	0.213897	1	0.643730
Does your village close with w	et area, and sta	agnant water?					
Very close	4	4.39	87	95.6			
Far from villages	4	4.25	90	95.7	0.002284	2	0.998859
No water surrounding	4	4.30	89	95.6	0.002284	2	0.998839
Does vector control reduce mo	squito transmis	ssion?					
Yes	7	3.4	189	96.6			
No	4	8.2	45	91.8	2.160564	2	0.339500
I don't know	1	4.1	23	95.9			

4. DISCUSSION

This study indicates the magnitude of malaria in Mogadishu city and expressed the low incidence of malaria among the health seekers attending at Banaadir and Martine hospitals, each hospital the participants arrived have done blood test used RDTs, seeking for malaria cases, therefore the hospitals are also located at different districts, these two hospitals are public hospitals providing all medical services in need. The present study was analyst the following variables such as sociodemographic characteristic, health-seeker knowledge, and health-seeker practices based on the malaria infection and mosquito control. Thus, this study found 12 (4.3%) of malaria infections cases among the health-seekers after being diagnosed with malaria parasites, however the diagnostic was done seems mostly negative. In addition, the positive patients were 12 patients aged 15 and 26 years old above, once as a gender both male and female have consisted. Moreover, the positive patients with malaria are mostly living in Mogadishu city according the outcome. Also this outcome of positive malaria indicates the low incidence in Mogadishu city, regarded the number with malaria patients have obtained the study, which the largely of participants are strongly exercise the family hygiene and vector control measurement. Compare support study in low estimate for malaria prevalence obtained in this study is in agreement with another study carried out at a similar altitude in Ethiopia (Woyessa, 2012). Similar support study among 706 patients with complete information, 111 (15.7%) cases were identified: 105 were positive for Plasmodium falciparum only (De Oliveira, 2911). The present result conforms with the recorded higher prevalence of Plasmodium infection in males than in females in the hospital. However, studies have shown that females have better immunity to parasitic diseases and this was attributed to genetic and hormonal factors (Science, 2015). Compared to support the average of age in our study was 27.28 years as compared to the range of 10-60 years in their study. The prevalence of malaria in febrile patients was 20% in our study as compared to 34.85% in that study (Khan, 2006). On top of that this study didn't express any statistically significant correlation with the prevalence of malaria infection has observed the inferential statistics, hence a couple of variables have indicated the association with malaria cases. So regarded the MoH of Somalia has been providing anefforts to intervene and control the malaria infection in the society and has also effective cooperation with

governmental bodies, non-governmental organizations, and foreign entities, it is a vital to maintaining malaria control initiatives and mitigating the malaria prevalence in Mogadishu and throughout Somalia. Similarly, numerous actions carried out by international organizations and local health authorities in Mogadishu have had an impact. like provision of bed nets treated with insecticide, indoor residual spraying, and the availability of potent antimalarial drugs are some of these initiatives. Moreover, public education awareness and community involvement are essential for spreading knowledge and practices about malaria prevention measures, including using bed nets and getting medical attention as soon as possible for suspected cases.

CONCLUSION

The results of this investigation clearly showed that the participants' incidence of malaria infection was minimal. Because the participants were aware of the threat posed by mosquitoes in their area, they placed a strong exercise on vector control measures that reduce the number of mosquito breeding sites. They also understood the significance of indoor residual spray (IRS), which is essential for both mosquito prevention and control. The findings highlight the importance of ongoing surveillance, early detection, and prompt treatment strategies to reduce the impact of malaria on public health. Additionally, efforts should be intensified to enhance public awareness and education on preventive measures, such as the use of bed nets, mosquito repellents, and environmental management to minimize mosquito breeding sites. Furthermore, collaborations between healthcare providers, governmental agencies, and non-governmental organizations are essential to implementing and sustaining effective malaria control programs. Strengthening the healthcare infrastructure, ensuring the availability of diagnostic tools and appropriate antimalarial medications, and investing in research for new preventive and treatment methods are crucial steps in mitigating the prevalence of malaria. In conclusion, addressing the prevalence of malaria requires a multi-faceted and coordinated approach involving healthcare professionals, policymakers, and the community at large. By implementing comprehensive strategies, which can make substantial progress in reducing the impact of malaria on the health and well-being of individuals attending public hospitals. None of them was not indicated specific area with high burden of malaria morbidity.

RECOMMENDATION

Enhanced Surveillance Systems

Strengthen malaria surveillance systems to continually monitor and report cases accurately and implement real time or near real time reporting mechanisms to facilitate prompt responses to outbreaks.

Public Awareness and Education

Launch targeted public awareness campaigns to educate communities about malaria prevention, symptoms and the importance of seeking timely medical care and emphasize the use of bed nets, appropriate clothing and other preventive measures.

Vector Control Measures

Intensify efforts in vector control, such as indoor residual spraying and larval source management and ensure the availability and accessibility of insecticide treated bed nets especially in high risk areas.

Improved Diagnostic Facilities

Upgrade diagnostic facilities in public hospitals to ensure accurate and timely diagnosis of malaria cases and provide training for healthcare professionals on the latest diagnostic techniques.

Capacity Building

Invest in training healthcare professionals to enhance their capacity for early detection and effective management of malaria cases and provide ongoing education on updated treatment guidelines and emerging trends in malaria.

Community Engagement

Foster community engagement in malaria control programs, encouraging communities to actively participate in preventive measures and reporting suspected cases.

AUTHORS' CONTRIBUTIONS

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

CONSENT FOR PUBLICATION

Participants in this study provided informed consent, acknowledging that their anonymized data could be used for research purposes, including publication in academic journals or presentations at scientific conferences. No personal identifying information will be published, ensuring confidentiality throughout the process.

FUNDING

The author expresses his deepest gratitude to Horseed International University (HIU-Postgraduate), Somalia for their generous support in-funding this research.

DATA AVAILABILITY STATEMENT

Data are available upon request.

CONFLICT OF INTEREST

The author confirms that this article's content has no conflict of interest.

ACKNOWLEDGEMENTS

The researcher expresses his sincere gratitude to all of the participants and teams of this research study. Without their participants and support, this study would not have been possible.

REFERENCES

Agomo, C. O., 2009. Prevalence of malaria in pregnant women in Lagos, South-West Nigeria. *Korean Journal of Parasitology*, 47(2), pp. 179-183.

Aweis, A., 2023. Long-lasting insecticidal nets (LLINs) use among household members for protection against mosquito bite in Mogadishu districts. *PLOS Global Public Health*, p. e0000724.

Ayele, D. G., 2012. Prevalence and risk factors of malaria in Ethiopia. *Malaria Journal*, Volume 11, pp. 1-9.

Brousse, O., 2020. malaria prevalence across sub-Saharan African cities?. s.l.:s.n.

De Oliveira, Alexandre Macedo, 2011. Prevalence of malaria among patients attending public health facilities in Maputo City, Mozambique. s.l.:American Journal of Tropical Medicine and Hygiene.

De Oliveira, A. M., 2911. Prevalence of Malaria among Patients Attending Public Health Facilities in Maputo City, Mozambique. *American Journal of Tropical Medicine and Hygiene*, pp. 1002-1007.

Jenkins, R., 2015. Prevalence of malaria parasites in adults and its determinants in malaria endemic area of Kisumu County, Kenya. *Malaria Journal*, 14(1), pp. 1-6.

Kamau, Alice, 2020. Malaria infection, disease and mortality. Kenyan coast: 2020.

Khan, H. U., 2006. A study of prevalence of malaria in adult population of D.I. Khan, Pakistan. *Biomedica*, Volume 22, pp. 99-104.

Mutemba, R., 2011. In Somalia, the World Health Organization (WHO) estimates that there were 53 cases of malaria per 1,000 persons who were at risk in 2019.

Olotu, A., 2012. Estimating individual exposure to malaria using local prevalence of malaria infection in the field. *PLoS ONE*, 7(3).

Ramdzan, A. R., 2020. Prevalence of malaria and its risk factors in Sabah, Malaysia. *International Journal of Infectious Diseases*, Volume 91, pp. 68-72.

- Science, J. o. H., 2015. The Prevalence of Malaria in Children between the Ages 2-15 Visiting Gwarinpa General Hospital Life-Camp, Abuja, Nigeria. *Journal of Health Science*, 5(3), pp. 47-51.
- Tegegne, Y., 2021. The Prevalence of Malaria among Children in Ethiopia: A Systematic Review and Meta-Analysis. *Journal of Parasitology Research*.
- Umaru, M. L., 2015. Prevalence of Malaria in Patients Attending the General Hospital Makarfi, Makarfi Kaduna State, North-Western Nigeria. *American Journal of Infectious Diseases and Microbiology*, 3(1), pp. 1-5.
- Warsame, M., 22 May 2021. Current guidelines for malaria treatment in Somalia: Somalia country: 2020.
- Woyessa, A., 2012. Prevalence of malaria infection in Butajira area, south-central Ethiopia. *Malaria Journal*, Volume 11, pp. 1-8.

© 2024 Mohamed Salad Abdi

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.